八年级数学教学反思
身为一名到岗不久的人民教师,课堂教学是我们的任务之一,通过教学反思可以快速积累我们的教学经验,那么你有了解过教学反思吗?下面是小编为大家整理的八年级数学教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。
八年级数学教学反思1我们常有这样的困惑:不仅是讲了,而且是讲了多遍,可是学生的解题能力就是得不到提高!也常听见学生这样的埋怨:巩固题做了千万遍,数学成绩却迟迟得不到提高!这应该引起我们的反思了。诚然,出现上述情况涉及方方面面,但其中的例题教学值得反思,数学的例题是知识由产生到应用的关键一步,即所谓“抛砖引玉”,然而很多时候只是例题继例题,解后并没有引导学生进行反思,因而学生的学习也就停留在例题表层,出现上述情况也就不奇怪了。
孔子云:学而不思则罔。“罔”即迷惑而没有所得,把其意思引申一下,我们也就不难理解例题教学为什么要进行解后反思了。事实上,解后反思是一个知识小结、方法提炼的过程;是一个吸取教训、逐步提高的过程;是一个收获希望的过程。从这个角度上讲,例题教学的解后反思应该成为例题教学的一个重要内容。本文拟从以下三个方面作些探究。
一、在解题的方法规律处反思
“例题千万道,解后抛九霄”难以达到提高解题能力、发展思维的目的。善于作解题后的反思、方法的归类、规律的小结和技巧的揣摩,再进一步作一题多变,一题多问,一题多解,挖掘例题的深度和广度,扩大例题的辐射面,无疑对能力的提高和思维的发展是大有裨益的。
例如:(原例题)已知等腰三角形的腰长是4,底长为6;求周长。我们可以将此例题进行一题多变。
变式1已知等腰三角形一腰长为4,周长为14,求底边长。(这是考查逆向思维能力)
变式2已等腰三角形一边长为4;另一边长为6,求周长。(前两题相比,需要改变思维策略,进行分类讨论)
变式3已知等腰三角形的一边长为3,另一边长为6,求周长。(显然“3只能为底”否则与三角形两边之和大于第三边相矛盾,这有利于培养学生思维严密性)
变式4 已知等腰三角形的腰长为x,求底边长y的取值范围。
变式5 已知等腰三角形的腰长为X,底边长为y,周长是14。请先写出二者的函数关系式,再在平面直角坐标内画出二者的图象。(与前面相比,要求又提高了,特别是对条件0﹤y﹤2x的理解运用,是完成此问的关键)
再比如:人教版初三几何中第93页例2和第107页例1分别用不同的方法解答,这是一题多解不可多得的素材(AB为⊙O的直径,C为⊙O上的一点,AD和过C点的切线互相垂直,垂足为D。求证:AC平分∠DAB)
通过例题的层层变式,学生对三边关系定理的认识又深了一步,有利于培养学生从特殊到一般,从具体到抽象地分析问题、解决问题;通过例题解法多变的教学则有利于帮助学生形成思维定势,而又打破思维定势;有利于培养思维的变通性和灵活性。
二,在学生易错处反思
学生的知识背景、思维方式、情感体验往往和成人不同,而其表达方式可能又不准确,这就难免有“错”。例题教学若能从此切入,进行解后反思,则往往能找到“病根”,进而对症下药,常能收到事半功倍的效果!
有这样一个曾刊载于《中小学数学》初中(教师)版20xx年第5期的案例:一位初一的老师在讲完负负得正的规则后,出了这样一道题:—3×(—4)= ?,A学生的答案是“9”,老师一看:错了!于是马上请B同学回答,这位同学的答案是“12”,老师便请他讲一讲算法:……,下课后听课的老师对给出错误的答案的学生进行访谈,那位学生说:站在—3这个点上,因为乘以—4,所以要沿着数轴向相反方向移动四次,每次移三格,故答案为9。他的答案的确错了,怎么错的?为什么会有这样的想法?又怎样纠正呢?如果我们的例题教学能抓住这一契机,并就此展开讨论、反思,无疑比讲十道、百道乃至更多的例题来巩固法则要好得多,而这一点恰恰容易被我们所忽视。
计算是初一代数的教学重点也是难点,如何把握这一重点,突破这一难点?各老师在例题教学方面可谓“千方百计”。例如在上完有关幂的性质,而进入下一阶段——单项式、多项式的乘除法时,笔者就设计了如下的两个例题:
(1)请分别指出(—2)2,—22,—2-2,2-2的意义;
(2)请辨析下列各式:
① a2+a2=a4
②a4÷a2=a4÷2=a2
③-a3 ·(-a)2 =(-a)3+2 =-a5
④(-a)0 ÷a3=0
⑤(a-2)3·a=a-2+3+1=a2
三、解后笔者便引导学生进行反思小结.
(1)计算常出现哪些方面的错误?
(2)出现这些错误的原因有哪些?
(3)怎样克服这些错误呢?
同学们各抒己见,针对各种“病因”开出了有效的“方子”。实践证明,这样的例题教学是成功的,学生在计算的准确率、计算的速度两个方面都有极大的提高。
八年级数学教学反思2我们常有这样的困惑:不仅是讲了,而且是讲了多遍,可是学生的解题能力就是得不到提高!也常听见学生这样的埋怨:巩固题做了千万遍,数学成绩却迟迟得不到提高!这应该引起我们的反思了。诚然,出现上述情况涉及方方面面,但其中的例题教学值得反思,数学的例题是知识由产生到应用的关键一步,即所谓“抛砖引玉”,然而很多时候只是例题继例题,解后并没有引导学生进行反思,因而学生的学习也就停留在例题表层,出现上述情况也就不奇怪了。
孔子云:学而不思则罔。“罔”即迷惑而没有所得,把其意思引申一下,我们也就不难理解例题教学为什么要进行解后反思了。事实上,解后反思是一个知识小结、方法提炼的过程;是一个吸取教训、逐步提高的过程;是一个收获希望的过程。从这个角度上讲,例题教学的解后反思应该成为例题教学的一个重要内容。本文拟从以下三个方面作些探究。
一、在解题的方法规律处反思
“例题千万道,解后抛九霄”难以达到提高解题能力、发展思维的目的。善于作解题后的反思、方法的归类、规律的小结和技巧的揣摩,再进一步作一题多变,一题多问,一题多解,挖掘例题的深度和广度,扩大例题的辐射面,无疑对能力的提高和思维的发展是大有裨益的。
例如:(原例题)已知等腰三角形的腰长是4,底长为6;求周长。我们可以将此例题进行一题多变。
变式1 已知等腰三角形一腰长为4,周长为14,求底边长。(这是考查逆向思维能力)
变式2 已等腰三角形一边长为4;另一边长为6,求周长。(前两题相比,需要改变思维策略,进行分类讨论)
变式3已知等腰三角形的一边长为3,另一边长为6,求周长。(显然“3只能为底”否则与三角形两边之和大于第三边相矛盾,这有利 ……此处隐藏7707个字……得到从双曲线上任意一点P作x、y轴的垂线三角形PQO的面积与k的关系,得到从双曲线上任意一个动点P作坐标轴的垂线,围成的长方形S1、S2、S3的面积总有S1=S2=S3;
例题2揭示了正比例函数的图象与反比例函数的图象两个交点的关系(关于原点对称),过两个交点并且垂直于坐标轴的直线围成的矩形的面积(等于k的绝对值的4倍),进而进行题目的变化,得到几种三角形的面积和平行四边形的面积,由学生及时进行相应的练习;
例题3把一次函数与反比例函数相结合,进行了比较简单的综合应用,让学生进行面积的和差组合,培养学生分析问题解决问题的能力。
在学生进行到反比例函数的研究时,数形结合的思想就能够应用自如了,学生的学习情况还是比较好的。回想起来,还是结合个方面的知识内容,用待定系数法求函数的解析式的题目类型学生的达成率不够好,要加强这方面的训练。
利用待定系数法求反比例函数的解析式是学生必会内容,本课教学有一次函数的基础,所以学生学习起来并不感到有多困难的。因此,本课在学习用待定系数法求函数的解析式的前面安排函数性质的复习,学习和巩固“在每个象限内”的反比例函数的增减情况的有关应用问题,例如第4小题,A(a,b),B(a-1,c)在反比例函数y=k/x(k<0)的图象上,探究a的各种不同的取值情况下,b与c的大小关系。
用待定系数法求反比例函数的解析式,安排了两个例题两个练习,题量不多重在使学生自主学习,这里着重加强对数形结合思想的应用,培养学生通过图形研究问题的习惯,另外,例题2需要学生结合三角形全等的几何知识解决点的坐标的探究,去年期末考试的最后一道试题也是在平面直角坐标系下几何问题的研究,学生不是很熟悉的,因此,培养学生各种背景下数学问题的研究很有必要。
由于在上面两块内容上用了很多时间,本课对比例系数k的几何意义没有作研究,安排在下一课再作学习。
八年级数学教学反思14数学课程标准中关于公式的教学目标是:会推导公式(a+b)(a-b)=a2-b2,了解公式的几何背景,并能简单计算。教材在安排两数和乘以两数差公式时,先根据多项式乘法法则对公式进行推导,再通过求一个几何图形的面积引出公式,最后安排两道例题。
教学中,我基本按教材顺序进行教学,大多数同学也都掌握了公式的特点,会有公式进行计算,但从学生作业反馈的情况来看,效果并不好。事后通过个别辅导等,方才使学生会用平方差公式进行计算。
反思这节课的教学,我觉得有以下三个环节未处理好:
一是直接引出图形,未能注重情景的创设。如果先出示一组计算题:如:(a+b)(a-b),(a+3b)(a-3b),(0.5x-3y)(0.5x+3y),限定时间让学生用多项式乘法法则进行计算,然后启发学生观察这组计算题的特点,引导学生自己发现平方差公式,再通过拼图验证公式的正确性。那么,学生就能明白我们为什么要学习了平方差公式。从激发学生的学习兴趣考虑,此举效果可能更好。
二是在公式得出后,我急于代替学生说出公式的结构特点,而不是让学生自己独立说出,此举不利于加深学生对公式结构的掌握,在后来的学习中也就难以灵活运用。同时也不利于培养学生的口头表达能力。
三是例题的选取缺乏遇见性。虽然学生会用平方差公式求(a+b)(a-b),(a+3b)(a-3b),(0.5x-3y)(0.5x+3y),但对于一些变式题,学生则感到难以下手,比如(b+a)(-b+a),(3b+a)(a-3b),(-0.5x-3y)(0.5x+3y),(a+b-c)(a-b+c),(0.5x-3y)2(0.5x+3y)2等。如果在进行例题教学时,我除了能注重发挥传统教学的长处,还能适当进行一题多变的训练,那么学生遇到上述习题,或许会不觉得那么难了。
八年级数学教学反思15有人曾说“课堂教学总是一门带着遗憾的艺术”,作为一名教师,我对此也颇有感慨。面对新的理念,新的结构,新的形式,新的体系,在课堂教学中,教师是否能最大限度地发挥主导作用,直接影响和制约着学生主体作用的发挥。以下我就谈谈在本节课中教师的主导作用。
一、设疑导思探索公式--------引导者
教师的主导作用首先体现在培养学生的学习兴趣方面。因为教师是课堂心理环境的直接创造者,教师“导入”的情境、语言、方法直接影响学生的学习兴趣及其探索知识的欲望。由于我校学生的基础都不是很好,所以本课采用学生刚学过的“多项式乘法法则”来吸引学生的注意力,提高学生的学习兴趣,从而使其端正学习态度全神贯注地投入到学习的整个过程中。
二、激活主题理解公式--------促进者
教师的主导作用还应体现在积极进行学法研究,加强学法指导。本节课中,先用图形的面积来对公式作出直观的理解,再用口诀来概括公式,使学生对公式的理解更加形象生动;最后通过例题让学生按公式对号入座,进一步理解公式中的a和b既可以表示数也可以表示字母,既可以表示单项式也可以表示多项式。采用由直观到抽象,由抽象到形象,由形象到具体,层层递进,由浅入深,深入浅出的办法,使学生对完全平方公式有一个充分理解的过程。
三、组织交流应用公式--------调控者
由于学生所处的文化环境、知识基础和自身的思维方式不同,将导致不同的学习结果,即使是思维反映很灵敏的学生,在有些时刻也会遇到一些思维障碍。本节课在学生练习过程中,要仔细观察学生探索活动的情绪表现,从学生的言语、表情、眼神、手势和体态等方面观察他们的内心活动,分析他们的思维状态和概念水平,捕捉各种思维现象,随时调整教学过程,让学生自己去反思、纠错,而教师则在关键时刻引导或者作出恰当的点拨。教师的主导作用还应体现在及时发现学生思维发展中出现的错误后有针对地指导、引导学生进行讨论和探究。尤其是对(—2a—5)2的应用可以看成〔(—2a)+(—5)〕2对应(a+b)2,也可以看成〔(—2a)—5〕2对应(a—b)2;更可以看成〔—(2a+5)〕2=(2a+5)2;而对于(a+b+c)2的应用,可以用多项式乘法法则(a+b+c)(a+b+c),也可以用完全平方公式,看成〔(a+b)+c〕2,也可以看成〔a+(b+c)〕2,不管是什么形式,最后结果是一样的。这样通过变式练习,从而使学生多角度、全方面地对完全平方公式进行充分认识,完全平方公式中的a和b可以表示单项式也可以表示多项式,完全平方公式可以看成一个公式也可以看成两个公式,增加学生对完全平方公式应用的灵活性,要让不同的学生得到不同的发展。
四、明晰结论深化公式--------提高者
教师主导作用应是画龙点睛作用。观察思考、表达是伴随探究过程不可或缺的因素。本节课中,通过纠错练习,对四道题的正确答案进行比较分析得出总结:如果a、b的符号相同,乘积的2倍的符号用“+”;如果a、b的符号相反,乘积的2倍的符号用“—”。使学生对公式的认识从感性认识上升到理性认识,思维从复合阶段前进到明晰阶段。通过对公式的缺项选择填空练习,使学生对完全平方公式的认识进一步升华。
文档为doc格式